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3. q = t, b with mb=4.7 GeV and mt = 173 GeV.

Case (1) allows us to explain the structure of the gauge
corrections without worrying about mass e! ects and
Higgs corrections. Case (2) also involves Higgs radiative
corrections, but has a stablet quark sincemt < m b+ mW .
Finally case (3) is the physical case with an unstablet,
which can decay viat ! bW decay.

The virtual corrections can be computed from the re-
sults in Ref. [9] (including also theyb terms), and are ob-
tained by averaging the electroweak corrections for left-
and right-handed quarks. The virtual corrections to the
cross sections are

! V (gg ! tt) = ! 0,t {vW + 3 vt + vb}
! V (gg ! bb) = ! 0,b {vW + vt + 3 vb} (12)

where

vW =
CF " W

4#

[
" L

2 + 3L
]

,

vt = "
y2

t

32#2 L,

vb = "
y2

b

32#2 L (13)

! 0,t = ! (gg ! tøt), and ! 0,b = ! (gg ! bøb) are the corre-
sponding tree-level rates,CF = 3 / 4 for SU(2), and yt,b
are the quark Yukawa couplings. The corrections foru, d
quarks are given byyt,b ! 0. The tree-level cross section
! 0 depends on the$ cut. The virtual rates depend on the
$ cut in the same way as the tree-level rates. The reason
is that the virtual electroweak corrections for gg ! qøq
do not depend on the kinematic variables (such as the
scattering angle) in this case, so the radiative correction
is an overall multiplicative factor. In other cases, such
as qq ! qøq, the virtual electroweak corrections depend
on kinematic variables, and have to be integrated over
phase space. The gauge radiative corrections have both
L2 and L terms, whereas the Higgs radiative corrections
are linear in L.

A. u, d Quark Production

The tree-level processes aregg ! uøu and gg ! d ød, and
the real radiation processes aregg ! uøuZ , gg ! d ødZ,
gg ! u ødW− and gg ! døuW + . Since we are work-
ing in an SU(2)W theory (with Z = W 3), custodial
SU(2) implies that the ! (uøu) = ! (d ød), and ! (u ødW−) =
! (døuW + ) = 2 ! (uøuZ ) = 2 ! (d ødZ).

Figure 6 shows the real and virtual corrections to the
uøu, d ød production rate, as a function of ECM , for |$| <
1, 3 cuts. All rates have been normalized by dividing
by the tree-level gg ! uøu rate for the corresponding $
cut. This removes the overall 1/s dependence of the cross
sections. The graph clearly shows that the virtual and
real cross sections become large at high energy, and the
L2 dependence is reßected in the quadratic shape of the
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FIG. 6: Plot of real and virtual corrections to gg ! qøq for
q = u, d. All rates have been normalized to the tree-level
gg ! uøu rate. The virtual correction to gg ! qøq is shown as
blue dots. The gg ! qøqW real emission rate as a function of
ECM for |! | < 1, 3 cuts are shown as red and purple squares,
respectively. The " W correction to the total rate with |! | <
1 and |! | < 3 cuts are shown as red and purple diamonds,
respectively.

curves. The virtual correction is independent of the$ cut,
and as is typical of Sudakov e! ects, is negative. The real
correction depends on the$ cut. The L2, L corrections
arise from soft and collinear radiation; the real radiation
kinematics for the Þnal state quarks in gg ! qøqW is
similar to that for the tree-level gg ! qøq process. As
a result, the L2, L terms do not depend on the $ cut,
and only the constant L0 term does. This is reßected in
the Þgure by the fact that the di! erence in cross sections
between the two values of the$ cut remains constant as
ECM is changed.

The L2, L terms cancel in the total cross section, as is
evident by the curves for the total rate becoming horizon-
tal for large energy, and only the constant terms survive.
The electroweak corrections to the total cross section are
at the 10% level. At partonic center-of-mass energies of
about one TeV, the individual corrections from the real
and virtual corrections are also at the 10% level, but they
rise quickly as ECM is increased.

For a 100 TeV machine, partonic center-of-mass ener-
gies can exceed 10 TeV, and the corrections become large
(factors of 2). For most experimentally relevant processes
there is never a complete cancellation of the logarithms
(since one is typically not measuring a totally inclusive
rate, and furthermore the initial state is not an SU(2)
singlet), the resummed expressions are needed.

The cancellation between real and virtual corrections
is

3! (u ødW) + 2 vW ! (uøu) ! 0 (14)

using the isospin relations mentioned earlier and
Eqs. (12,13), where ! 0 means that theL2, L dependence
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blue dots. The gg ! qøqW real emission rate as a function of
ECM for |! | < 1, 3 cuts are shown as red and purple squares,
respectively. The " W correction to the total rate with |! | <
1 and |! | < 3 cuts are shown as red and purple diamonds,
respectively.

curves. The virtual correction is independent of the$ cut,
and as is typical of Sudakov e! ects, is negative. The real
correction depends on the$ cut. The L2, L corrections
arise from soft and collinear radiation; the real radiation
kinematics for the Þnal state quarks in gg ! qøqW is
similar to that for the tree-level gg ! qøq process. As
a result, the L2, L terms do not depend on the $ cut,
and only the constant L0 term does. This is reßected in
the Þgure by the fact that the di! erence in cross sections
between the two values of the$ cut remains constant as
ECM is changed.

The L2, L terms cancel in the total cross section, as is
evident by the curves for the total rate becoming horizon-
tal for large energy, and only the constant terms survive.
The electroweak corrections to the total cross section are
at the 10% level. At partonic center-of-mass energies of
about one TeV, the individual corrections from the real
and virtual corrections are also at the 10% level, but they
rise quickly as ECM is increased.

For a 100 TeV machine, partonic center-of-mass ener-
gies can exceed 10 TeV, and the corrections become large
(factors of 2). For most experimentally relevant processes
there is never a complete cancellation of the logarithms
(since one is typically not measuring a totally inclusive
rate, and furthermore the initial state is not an SU(2)
singlet), the resummed expressions are needed.

The cancellation between real and virtual corrections
is

3! (u ødW) + 2 vW ! (uøu) ! 0 (14)

using the isospin relations mentioned earlier and
Eqs. (12,13), where ! 0 means that theL2, L dependence

Resummation of EW 
Sudakov logarithms
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Consider example of qq production 

Have contributions from virtual and real emission

3

⊗ ⊗

b
b

t

t
t

b
W

⊗ ⊗

t

bb

t

t t

W ⊗ ⊗

b

t

t

t

t

b

W

⊗ ⊗

t

b
t

t

t
t

W

FIG. 1: Graphs contributing to the αW correction to the J → qq̄ rate.

⊗

FIG. 2: Virtual correction to J → qq.

⊗ ⊗

FIG. 3: Real radiation from J → qqW .

where σ0 is the tree-level cross section. The − ln2 r and
−3 ln r terms lead to large corrections at high energy.
The real radiation J → qqW arises from the graphs in

Fig. 3, and is

σR =
CFαW

2π
σ0

{
5(1− r2) + (3 + 4r + 3r2) ln r

+ (1 + r)2
[
ln2 r − 4 ln r ln(1 + r) − 4 Li2 (−r)−

π2

3

]}
.

(7)

Expanding in r gives

σR =
CFαW

2π
σ0

{
ln2 r + 3 ln r −

π2

3
+ 5 + . . .

}
. (8)

The total radiative correction is

σT = σR + σV

=
CFαW

2π
σ0

{
3

2
− 2r − 5r2 + (2 + 3r)r ln r

− 2(1 + r)2 [ln r ln(1 + r) + Li2 (−r)]

}
(9)
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FIG. 4: Plot of the real and virtual corrections to J → qq̄.
Plotted are the exact virtual correction (solid blue), the vir-
tual corrections using SCETEW (dashed blue), real radiation
(red), exact total rate (black) and the total rate using the
SCETEW virtual correction (dashed black).

and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
di! erences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is su" ciently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead
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and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
di! erences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is su" ciently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

For massless gauge boson, get IR divergences in both virtual 
and real that cancel by KLN 
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and as r → 0 gives

σT =
3CFαW

4π
σ0 . (10)

The ln2 r and ln r terms cancel between σR,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement αW → αs and CF → 4/3.
The real and virtual corrections are shown in Fig. 4.

Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
di! erences, which are below 1% for E > 2MW ∼ 160
GeV, and < 0.5% by 400GeV, whereas the real and
virtual corrections each exceed 5% by the time E >
15MW ∼ 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is su" ciently accurate. The fig-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.
The above calculation demonstrates the usual cancel-

lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all final
states. This cancellation is not guaranteed to hold if
the cross section is modified by restrictions on the final
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

For massive W,  IR divergences regulated by log(mW2/s), and 
generally have two powers per power of alpha

Both virtual and real sensitive to log(mW2/s)
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where ! 0 is the tree-level cross section. The! ln2 r and
! 3 ln r terms lead to large corrections at high energy.

The real radiation J " qqW arises from the graphs in
Fig. 3, and is

! R =
CF " W

2#
! 0

!
5(1 ! r 2) + (3 + 4 r + 3 r 2) ln r

+ (1 + r )2
"
ln2 r ! 4 ln r ln(1 + r ) ! 4 Li2 (! r ) !

#2

3

#$
.

(7)

Expanding in r gives

! R =
CF " W

2#
! 0

!
ln2 r + 3 ln r !

#2

3
+ 5 + . . .

$
. (8)

The total radiative correction is

! T = ! R + ! V

=
CF " W

2#
! 0

!
3
2

! 2r ! 5r 2 + (2 + 3 r )r ln r

! 2(1 + r )2 [ln r ln(1 + r ) + Li 2 (! r )]
$

(9)
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and asr " 0 gives

! T =
3CF " W

4#
! 0 . (10)

The ln2 r and ln r terms cancel between! R,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement " W " " s and CF " 4/ 3.

The real and virtual corrections are shown in Fig. 4.
Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
di! erences, which are below 1% forE > 2M W # 160
GeV, and < 0.5% by 400 GeV, whereas the real and
virtual corrections each exceed 5% by the timeE >
15M W # 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is su" ciently accurate. The Þg-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.

The above calculation demonstrates the usual cancel-
lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all Þnal
states. This cancellation is not guaranteed to hold if
the cross section is modiÞed by restrictions on the Þnal
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

Real
Virtual
Sum

For J! qq production 

For E È 10mV, each contributions becomes large
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Process GV GR GR - GV

Inclusive 
ff(V) N CF N CF 0

Any fermion 
ff

N CF 0 -N CF

SpeciÞed fÕs 
fifj(V) 1/2(1 - ! ij/N) CF ! ij 1/2(1 - N ! ij)

4

to incomplete cancellation of the logarithms if the phase
space cuts restrict the soft or collinear radiation. One
can also investigate the possibility that, because elec-
troweak charge is an experimental observable, one can
separate the total cross section (J ! tt, bb, ttZ , bbZ,
tbW! , btW + ) into sub-processes tagged by the Þnal state
particles, without restricting phase space. This is useful
because the di! erent channels have di! erent experimen-
tal signatures, and are often measured separately [40].
The second possibility is studied below, and is comple-
mentary to the non-cancellation of logarithmic terms due
to phase space restrictions, and due to electroweak non-
singlet initial states [1Ð3].

The real and virtual cross sections are modiÞed if one
does not sum over all Þnal states. In the simple example
we are considering with degenerate fermions and bosons,
the only change is that Eqs. (6,8) are modiÞed by the
replacement of the group theory factorNCF (N = 2) by
GV and GR , which need not be equal, so that the total
cross section

! T =
" W

2#
(GR " GV ) !! 0

"
ln2 r + 3 ln r + . . .

#
(11)

can have large corrections at high energy. The depen-
dence of the cross section on ln2 r +3 ln r is characteristic
of the IR structure of a vector current [41].

To study this non-cancellation, we tabulate the group
theory factors GV,R in Table I for some possible choices
of Þnal state, for an SU(N ) gauge theory. In Eq. (11),
! 0 = N !! 0 is the total tree-level rate, so that ö! 0 is N -
independent. The di! erent cases are:

1. Any fermion with or without any gauge bosons, i.e.
the full inclusive rate.

2. Any fermion but no gauge boson, e.g. tøt, bøb, but
not tøtZ , bbZ, tøbW! , bøtW + .

3. Specify one fermion with or without any gauge
bosons, e.g.t + X , with X = øt, øtZ , øbW! .

4. Specify one fermion and no gauge bosons, e.g.t+ X ,
with X = øt.

5. Specify both fermions (labeled byi, j ) with or with-
out any gauge bosons, e.g. i = j = 1 is ttX ,
i = 1 , j = 2 is tbX, etc.

6. Specify both fermions and require no gauge bosons.
Same as the previous case butX cannot contain
gauge bosons.

One can see that for cases 1 and 3, the logarithmic
terms are absent, while for all other cases, the logarithms
survive and give rise to large corrections at high energies.

IV. HEAVY QUARK PRODUCTION

In this section, we study the real and virtual cor-
rections to heavy quark production via gluon fusion,

Case GR GV GR ! GV

1 NCF NCF 0

2 0 NCF ! NCF

3 CF CF 0

4 0 CF ! CF

5 1
2 ! 1

2N ! ij CF ! ij
1
2 ! N

2 ! ij

6 0 CF ! ij ! CF ! ij

TABLE I: Group theory factors for real and virtual emission
for an SU(N ) gauge theory. CF = ( N 2 ! 1)/ (2N ). The
di! erent cases are described in the text.

FIG. 5: Tree-level graphs for gg " qøq. The Þrst and second
graphs have singularities for forward and backward scatter ing,
respectively.

gg ! qøq. The tree-level graphs are given in Fig.5. The
real radiation is computed by numerical integration using
MadGraph5 aMC@NLO [42]. The virtual corrections
use the SCET results of Ref. [9]. Since the real emis-
sion rate is a Þxed order result, the virtual correction
is expanded out to order " W to study the real-virtual
cancellation.

The gg ! qøq total cross-section has at-channel singu-
larity for forward scattering, and a u-channel singularity
for backward scattering, from the graphs in Fig. 5. To
avoid these singularities, we impose rapidity cuts. We re-
quire the particle with highest transverse momentum to
have |$| < 1 or |$| < 3. We will refer to these as|$| < 1, 3
cuts, respectively. We also require that the particle with
second highestpT satisfy |$| < 5. These cuts allow for
collinear and soft W emission from energetic quarks, but
avoid the forward and backward singularities. They are
applied to both the gg ! qøq and gg ! qøqW rates.

The scattering cross section can depend on the collision
energy s = E 2

CM , the rapidity cut $, and the particle
masses{M }. If the cross section is infrared Þnite as
{M } ! 0, then it cannot contain ln s/M 2 terms. The
Sudakov logarithms are a sign that the cross section is
divergent in the massless limit. In the gg ! qøq case,
the real and virtual corrections have Sudakov logarithms
which cancel in the total rate.

We study the gg ! qøq, qøqW rates for three cases:

1. q = u, d

2. q = t, b with mb=100 GeV and mt = 173 GeV

Furthermore, since initial pp state not SU(2) singlet, EW 
Sudakov logs donÕt cancel even in fully inclusive case
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FIG. 1: Graphs contributing to the ! W correction to the J " qøq rate.

!

FIG. 2: Virtual correction to J " qq.

! !

FIG. 3: Real radiation from J " qqW.

where ! 0 is the tree-level cross section. The! ln2 r and
! 3 ln r terms lead to large corrections at high energy.

The real radiation J " qqW arises from the graphs in
Fig. 3, and is

! R =
CF " W

2#
! 0

!
5(1 ! r 2) + (3 + 4 r + 3 r 2) ln r

+ (1 + r )2
"
ln2 r ! 4 ln r ln(1 + r ) ! 4 Li2 (! r ) !

#2

3

#$
.

(7)

Expanding in r gives

! R =
CF " W

2#
! 0

!
ln2 r + 3 ln r !

#2

3
+ 5 + . . .

$
. (8)

The total radiative correction is

! T = ! R + ! V

=
CF " W

2#
! 0

!
3
2

! 2r ! 5r 2 + (2 + 3 r )r ln r

! 2(1 + r )2 [ln r ln(1 + r ) + Li 2 (! r )]
$

(9)

10.05.02.0 20.03.01.5 15.07.0
E!MW

! 0.06

! 0.04

! 0.02

0.00

0.02

0.04

0.06

FIG. 4: Plot of the real and virtual corrections to J " qøq.
Plotted are the exact virtual correction (solid blue), the v ir-
tual corrections using SCET EW (dashed blue), real radiation
(red), exact total rate (black) and the total rate using the
SCETEW virtual correction (dashed black).

and asr " 0 gives

! T =
3CF " W

4#
! 0 . (10)

The ln2 r and ln r terms cancel between! R,V . The cor-
rection to R in QCD is given by Eq. (10) with the re-
placement " W " " s and CF " 4/ 3.

The real and virtual corrections are shown in Fig. 4.
Also shown is the virtual correction computed using the
SCETEW result of Eq. (A2). The SCETEW and exact cal-
culations for the virtual correction have only very small
di! erences, which are below 1% forE > 2M W # 160
GeV, and < 0.5% by 400 GeV, whereas the real and
virtual corrections each exceed 5% by the timeE >
15M W # 1.2 TeV. This shows that in the regime where
the electroweak corrections are relevant at the LHC, the
SCETEW computation is su" ciently accurate. The Þg-
ure also shows that the large real and virtual electroweak
corrections cancel in the total cross section.

The above calculation demonstrates the usual cancel-
lation of the L2 and L terms between real and virtual
graphs for the total cross section summed over all Þnal
states. This cancellation is not guaranteed to hold if
the cross section is modiÞed by restrictions on the Þnal
state. One can impose phase space restrictions on the
kinematics of the emitted gauge boson. Consequences
of doing so were studied in detail in Ref. [6], and lead

Real
Virtual
Sum

Virtual requires a loop 
diagram with multiple 
scales in a broken gauge 
theory (quite difÞcult)

Large logarithms arise from the IR behavior of theory 
(mV Ç pT) which can be extracted from SCET in unbroken 

theory

EW Sudakov logs known for any 2! 2 process, both for SM 
and BSM processes. Only depends on SU(2) charges

Full theory

SCET
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already in Sec.IV A , and ! S . The Higgs emission curves
! (tøtH ), ! (bøbH) are linear, which means they containL
terms but no L2 terms.

The sum of all the real radiation rates, as well as the
total cross section, are shown in Fig.8. The total cross
section levels out at high energy (we have veriÞed this by
continuing the plot to even higher center of mass ener-
gies), which shows numerically that theL2 and L terms
cancel between the real and virtual corrections. The total
real emission rate is

! R = 2 ! (tøbW! ) + ! (tøtZ ) + ! (bøbZ) + ! (tøtH ) + ! (bøbH)

! 3! (u ødW! ) + 8( y2
t + y2

b)! S (16)

and the total virtual rate is

! V = ! V (tøt) + ! V (bøb) = (2 vW + 4 vt + 4 vb) ! (uøu) (17)

The cancellation ! R + ! V ! 0 implies that

3! (u ødW! ) + 8( y2
t + y2

b)! S + (2 vW + 4 vt + 4 vb) ! (uøu) ! 0.
(18)

The gauge and Higgs parts cancel separately. The gauge
part cancels using Eq. (14), and

8(y2
t + y2

b)! S + (4 vt + 4 vb) ! (uøu) ! 0. (19)

From Eq. (13), we see that vt,b are linear in L, which
explains the linearity of the Higgs emission cross section
! S .

C. t, b Quark Production with mb = 4 .7 GeV

Finally, we study the case of a physicalb quark with
mb = 4 .7 GeV and an unstablet quark. The virtual cor-
rections are still given by Eq. (12). There is, however, an
important change in the tøbW! decay rate because the
processgg ! tøt followed by øt ! øbW! contributes to
this rate. The tøbW! di! erential decay rate has a singu-
larity when ( pøb + pW ! )2 = m2

t , and the cross section
diverges when integrated over Þnal state phase space.
The standard way to resolve this singularity is to reg-
ulate it by the t-quark width using the replacement (the
narrow width approximation, which is what is used in
MadGraph5 aMC@NLO )

1
p2 " m2

t + i "
!

1
p2 " m2

t + im t " t
(20)

for the t-quark propagator, where" t is the t-quark width.
This is equivalent to summing a class of diagrams, the
imaginary parts of W corrections to the t-quark propa-
gator, shown in Fig. 11. This is not gauge invariant, and
also formally mixes di! erent orders in the#W expansion,
since thet-quark width is O(#W mt ). The cut in the sec-
ond graph of Fig. 1 is the same cut as occurs in summing
the imaginary parts of Fig. 11, and the two cuts can-
not be treated separately, as is done in the narrow width
approximation.
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FIG. 9: Same as Fig. 7, but for mb = 4 .7 GeV.
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FIG. 10: Same as Fig. 8, but for mb = 4 .7 GeV.

If the t ! bW! decay is kinematically forbidden, the
tbW! real emission rate is order#W . When the decay is
kinematically allowed, the tbW! rate becomes order 1.
The reason is that in the resonance region, the rate is en-
hanced by a factor of 1/ " t . The total tbW! rate includes
what, in the kinematically forbidden case, is theO(1) tøt
rate. Once the tbW! decay is kinematically allowed, the
approximation Eq. (20), while getting the correct O(1)
rate, does not get the correctO(#W ) piece.

To understand how the infrared divergence cancella-
tion occurs for an unstablet quark, consider the simpler
case oftøt production by a current J , as in Sec.III . The
#W correction to the total rate can be computed from
the imaginary part of the vacuum polarization graphs in

Consider gg !  t tbar production

Are we usually fully inclusive over real radiation?

¥Since gg is SU(2) singlet, no 
leftover logs in sum of real 
and virtual

¥While both real and virtual 
get very large corrections, 
large effects cancel in the sum
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Consider gg !  t tbar production

Important question that needs to be asked:

What is the actual experimental signature?
Is extra radiation of gauge bosons included?

Most likely:      tt+(Z! !! )   tb+(W ! l! )
Maybe:           tt+(Z! qq?)   
Likely not:       tt+(Z! À%À%)   bb    bbZ

Most of the time, real radiation is partially included
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already in Sec.IV A , and ! S . The Higgs emission curves
! (tøtH ), ! (bøbH) are linear, which means they containL
terms but no L2 terms.

The sum of all the real radiation rates, as well as the
total cross section, are shown in Fig.8. The total cross
section levels out at high energy (we have veriÞed this by
continuing the plot to even higher center of mass ener-
gies), which shows numerically that theL2 and L terms
cancel between the real and virtual corrections. The total
real emission rate is

! R = 2 ! (tøbW! ) + ! (tøtZ ) + ! (bøbZ) + ! (tøtH ) + ! (bøbH)

! 3! (u ødW! ) + 8( y2
t + y2

b)! S (16)

and the total virtual rate is

! V = ! V (tøt) + ! V (bøb) = (2 vW + 4 vt + 4 vb) ! (uøu) (17)

The cancellation ! R + ! V ! 0 implies that

3! (u ødW! ) + 8( y2
t + y2

b)! S + (2 vW + 4 vt + 4 vb) ! (uøu) ! 0.
(18)

The gauge and Higgs parts cancel separately. The gauge
part cancels using Eq. (14), and

8(y2
t + y2

b)! S + (4 vt + 4 vb) ! (uøu) ! 0. (19)

From Eq. (13), we see that vt,b are linear in L, which
explains the linearity of the Higgs emission cross section
! S .

C. t, b Quark Production with mb = 4 .7 GeV

Finally, we study the case of a physicalb quark with
mb = 4 .7 GeV and an unstablet quark. The virtual cor-
rections are still given by Eq. (12). There is, however, an
important change in the tøbW! decay rate because the
processgg ! tøt followed by øt ! øbW! contributes to
this rate. The tøbW! di! erential decay rate has a singu-
larity when ( pøb + pW ! )2 = m2

t , and the cross section
diverges when integrated over Þnal state phase space.
The standard way to resolve this singularity is to reg-
ulate it by the t-quark width using the replacement (the
narrow width approximation, which is what is used in
MadGraph5 aMC@NLO )

1
p2 " m2

t + i "
!

1
p2 " m2

t + im t " t
(20)

for the t-quark propagator, where" t is the t-quark width.
This is equivalent to summing a class of diagrams, the
imaginary parts of W corrections to the t-quark propa-
gator, shown in Fig. 11. This is not gauge invariant, and
also formally mixes di! erent orders in the#W expansion,
since thet-quark width is O(#W mt ). The cut in the sec-
ond graph of Fig. 1 is the same cut as occurs in summing
the imaginary parts of Fig. 11, and the two cuts can-
not be treated separately, as is done in the narrow width
approximation.
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If the t ! bW! decay is kinematically forbidden, the
tbW! real emission rate is order#W . When the decay is
kinematically allowed, the tbW! rate becomes order 1.
The reason is that in the resonance region, the rate is en-
hanced by a factor of 1/ " t . The total tbW! rate includes
what, in the kinematically forbidden case, is theO(1) tøt
rate. Once the tbW! decay is kinematically allowed, the
approximation Eq. (20), while getting the correct O(1)
rate, does not get the correctO(#W ) piece.

To understand how the infrared divergence cancella-
tion occurs for an unstablet quark, consider the simpler
case oftøt production by a current J , as in Sec.III . The
#W correction to the total rate can be computed from
the imaginary part of the vacuum polarization graphs in

Consider gg !  t tbar production

Electroweak Sudakov logarithms should be included 
in MCÕs to study high energy collisions

¥Different real emission 
contributions have different 
forms

¥Logarithms will remain in 
most analyses, and size 
depends sensitively on details 
of analysis
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¥EW Sudakov logs become quite large above a few TeV
¥This means EW corrections can be much larger than 
naively expected

¥Can be calculated quite easily in SCET, and effects should 
be included in MC programs
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Fully exclusive MC with 
NNLL / NNLO accuracy
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* Can mean either Þxed order or resummed 

Perturbative calculations Event generators

Can typically be performed with 
higher accuracy

Are fully differential, more similar to 
experimental data

Typically, observables have to be 
chosen before running code

Can just generate events, deÞne 
observables later

Intrinsically, has only information on 
partonic Þnal states

By attaching hadronization model, 
provides fully hadronized Þnal state
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¥Only a few years ago, NLO calculations required 
serious amount of work by dedicated groups

¥By now, NLO calculations completely standard, and 
can be performed by anybody using automated code

¥NLO is what LO was a few years ago
¥Much progress is made on NNLO calculations, and 
the tools are approaching general applicability

¥We are even starting to see the Þrst NNNLO 
calculations appearing
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¥Matching of LO calculations with a parton shower is 
completely standard and included in automatic codes

¥Matching NLO  calculations is somewhat automatic 
(requires to implement the NLO calculations in a 
particular way)

¥Very little available to match NNLO calculations with 
parton showers
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¥ Create phase 
space for jet 
event

! 2 ! 3 ! 4

+ á á á

¥ Calculate 
cross section 
and assign to 
partonic event

¥ Let parton 
shower Þll jets 
with radiation

D(&"#&4/(#28#I/"/@(#&'#$2#7()7A)($/#6%1'&7()#J/$#7.2''K'/7E2"'L#
<%&'#,2.*'#$2#("1#2.4/.#&"#6/.$A.-(E2"#$%/2.1
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Fixed Order Z+0 Fixed order Z+1 Fixed order Z+2 Resummation Z

NNLO NLO LO NNLLÕ

Use the full power of SCET to obtain exclusive jet 
distributions that are correct to given Þxed order and 

resummation accuracy

No other generator on the market with this level of 
accuracy
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¥GENEVA uses a general concept that is systematically 
improvable using EFT methods

¥It has been applied to Z+jets and reproduces both 
dedicated Þxed order and resummed calculations

¥Look forward to extending this to more processes in the 
future


